Journal of Chromatography, 98 (1974) 491–510 Chromatographic Reviews © Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

CHREV. 79

GAS CHROMATOGRAPHIC MEASUREMENT OF TRANSPORT PROPER-TIES

VASANT R. CHOUDHARY**

National Chemical Laboratory, Poona-8 (India) (Received March 28th, 1974)

CONTENTS

1. Introduction
2. Binary diffusion coefficients of gases
A. Method of Giddings and Seager
B. Method of Carberry and Bretton
C. Arrested elution method
D. Multi-flow-rate and one-flow-rate methods
3. Effective diffusivity of catalysts
4. Mass transfer coefficients for packed beds
A. General
B. Method based on moment analysis
C. Method based on Fourier analysis
D. Method based on the passage of a pulse through a stirred reactor
E. Study of mass transfer resistances in molecular sieves
5. Heat transfer parameters for packed beds
6. Acknowledgement
7. Summary
8. Nomenclature
References

I. INTRODUCTION

The greatest emphasis during the past 15 years in the application of gas chromatography to physical-analytical measurements has been placed on the determination of activity coefficients, vapour pressures, thermodynamic quantities, boiling points, second virial coefficients of gas mixtures, kinetic constants, solid surface properties, inter- and intra-phase mass transfer coefficients, etc.^{1–12}. Choudhary and Doraiswamy¹² presented a critical review of the applications of gas chromatography in catalysis.

In this paper, a comprehensive review of the literature published during the past 15 years on the use of gas chromatography in the evaluation of binary diffusion coefficients of gases and organic vapours, effective diffusivities of catalysts and adsorbents, intra-particle and intra-crystalline mass transfer coefficients, surface diffusion coefficients and heat transfer coefficients, is presented.

* NCL Communication No. 1790.

** Present address: Research and Development Centre, Indian Petrochemicals Corp. Ltd., P.O. Jawaharnagar, Dist.: Baroda, Gujarat, India.

2. BINARY DIFFUSION COEFFICIENTS OF GASES

Numerous techniques have been described for the measurement of binary diffusion coefficients of gases and organic vapours. Most of these methods, however, are time consuming in the evaluation of quantitative results¹³. Recent developments in the theory of chromatography^{14–18} have made it possible to develop techniques^{13,19} for the rapid and accurate measurement of diffusion coefficients.

A. Method of Giddings and Seager

Giddings and Seager^{13,20-22} were among the first workers to apply gas chromatography in order to measure gas-phase diffusion coefficients. The method is based on the special case¹⁵ of the more general theory of chromatography first derived by Taylor^{23,24}.

According to generalized chromatographic theory^{15,25,26}, the height equivalent to a theoretical plate (HETP. H) of a packed column can be written as

$$H = 1/[(1/2\lambda d_p) + (1/C_g r)] + \frac{2\gamma D_g}{r} + C_l r + C_k r$$
(1)

This equation is simplified by replacing the packed column by an empty tube of uniform circular cross-section and assuming that adsorption at the wall is negligible, so that $C_k = 0$. As there is no liquid in the tube, $C_l = 0$. Further, the quantity $2\lambda d_p$ approaches infinity because there are no mixing stages in the tube, and for this precise geometry γ is unity. Thus, eqn. 1, in the case of an empty tube of uniform cross-section, reduces to

$$H = \frac{r_{o}^{2}r}{24 D_{d}} - \frac{2 D_{d}}{r}$$
(2)

where the expression for a circular tube, $r_0^2/24 D_g$, replaces C_g .

An equivalent form of eqn. 2, as derived by Taylor²³, can be written as

$$D_{\bullet} = \frac{r}{4} \left(H \pm \sqrt{H^2 - \frac{r_0^2}{3}} \right)$$
(3)

For low flow-rates (r), eqn. 3 can be simplified²⁷ to

$$D_{g} = r\left(\frac{H}{2}\right) \tag{4}$$

which would be valid for low-molecular-weight gases.

The HETP can be obtained from chromatographic data by the relationship

$$H = \frac{L}{n} = \frac{L}{16} \left(\frac{\omega}{t_R}\right)^2 = \frac{L}{16} \left(\frac{m}{l}\right)^2$$
(5)

or

$$H = L \left(\frac{\tau}{t_R}\right)^2 \tag{6}$$

Eqns. 3 and 5 (or 6) imply that only three quantities, the peak width (or peak variance), the retention time and the average carrier flow velocity, are required for estimating the gas phase diffusivity. The positive root of eqn. 3 is valid up to a certain critical velocity r_{e} given by¹³:

$$v_c = 4 \sqrt{3} D_{AB}/r_0$$

At velocities greater than v_c , the negative root becomes valid. For the case when $r \gg v_c$, the Taylor limit becomes valid.

The apparatus consists of a commercially available gas chromatographic unit, with an empty tube of uniform circular cross-section replacing the packed column. In order to correct for the end-effects and for diffusion occurring in the instrument dead volume, Giddings and Seager¹³ collected data using both the long tube and the short tube separately, and the data for the short tube are subtracted from those for the long tube. Thus

$$H = (L_1 - L_s) \left(\tau_1^2 - \tau_s^2 \right) / (t_1 - t_s)^2$$
(8)

The need for this cumbersome two-column procedure was eliminated by Fuller *et al.*²⁸ through direct on-column sample introduction and a rigorous reduction of the detector dead volume. The oven dimensions were increased so as to accommodate the diffusion tube without tight coils and bends, which tend to distort tube cross-sections and otherwise alter the peak dispersion. Their gas chromatographic broadening apparatus for diffusion measurements is illustrated in Fig. 1.

Arnikar and co-workers^{29,30} made use of an electrodeless discharge tube as a detector in the rapid determination of binary diffusion coefficients of some organic vapours into nitrogen.

Hargrave and Sawyer³¹ applied a similar gas chromatographic method for the determination of gaseous inter-diffusion coefficients for solute vapour-carrier gas pairs in the temperature range 25–250° by using eqn. 4. The plate height is calculated from the relationship

$$H = \frac{L}{5.545} \cdot \left[\frac{c_1}{t_R}\right] \tag{9}$$

and the flow velocity (v) at the column outlet is calculated from

$$\frac{L}{L_{\mu}}$$
 (10)

as there is no measurable pressure drop across an open column.

۲.

Fuller *et al.*²⁸ determined experimental binary diffusion coefficients for some halogenated hydrocarbon compounds diffusing into helium by utilizing the gas chromatographic peak broadening technique, and described certain modifications that have improved the speed and accuracy of the technique. A critical discussion of the validity of the method is also given.

Huang et al.32 obtained experimental diffusivities for several gas-gas, gas-

(7)

liquid vapour and gas-solid vapour systems, using the above method. On the basis of the experimental results, a generalised semi-empirical equation:

$$D_{AB} = \frac{5.06 T^{1.15}}{(V_A^{1/3} + V_B^{1/3})^2 p^{1.286}} \left(\frac{1}{M_A} + \frac{1}{M_B}\right)^{1/2}$$
(11)

V. R. CHOUDHARY

has been developed to predict the diffusivities of binary gas-gas and gas-liquid vapour systems as a function of pressure and temperature. A comparison of this equation with data appearing in the literature yields an average error of 3.5%, which is less than that predicted by many other methods.

Kwok *et al.*³³ suggested that the normal plate height expression can still be used if proper modification of the diffusion coefficient is made in the case of linear adsorption. Several investigators^{27,31,34–38} have established the validity of the above gas chromatographic open-tube method for the measurement of the inter-diffusion coefficients of gases and vapours of volatile organic compounds.

B. Method of Carberry and Bretton

Carberry and Bretton³⁹ suggested a pulse-llow method, according to which the inter-diffusion coefficient can be obtained from the concentration-time distribution data or from the mean retention time as measured at the diffuse pulse maxima:

$$I_{nr} = \frac{D_{q}}{r^{2}} \left[\left(1 + \frac{L r}{D_{q}} \right)^{1/2} - 1 \right]$$
(12)

For beds of more than several particle diameters in length, eqn. 12 becomes a simple function of D_{q} , tube length (L) and velocity (r):

$$t_{m} = \frac{L}{v} - \frac{D_{g}}{v^{2}} = \theta - \frac{D_{g}}{v^{2}}$$
(13)

or

$$\frac{t_m}{\theta} = -\frac{D_g}{Lr} \tag{14}$$

Thus a plot of the ratio of the pulse retention time to that of carrier velocity, t_m/θ , is a function of 1/L v, the slope being equal to the diffusion coefficient. Beyond the flow regime where molecular transport governs axial dispersion, D_g is directly proportional to L v, and t_m/θ therefore becomes constant with the onset of turbulent diffusion.

Frontal analysis was also used by Fejes and Schay⁴⁰ for the determination of gaseous inter-diffusion coefficients.

All the methods discussed above are applicable to both open and packed tubes, but suffer from the disadvantages inherent in operating at low flow-rates from the uncertainty as to the role of "eddy diffusion", which may interact in a complex way with gas-phase mass transfer⁴¹.

C. Arrested elution method

Knox and McLaren⁴² suggested an arrested elution method that by-passes most of the experimental and theoretical difficulties which occur in the continuous elution method of Giddings and Seager¹³ and Giddings^{14–18}. It is applicable equally to open and packed columns and is of intrinsically higher precision than the continuous method based upon HETP measurement.

In this method, a sharp band of an unsorbed gas is injected into the column and eluted at a controlled and measurable velocity. When the band is about half way down the column, the gas flow is arrested for a time t, during which spreading can occur only by diffusion. Finally, the band is eluted from the column and its profile and standard deviation are determined by the detector. The diffusion spreading for empty and packed tubes is given by

$$\frac{\mathrm{d}\,\partial_t^2}{\mathrm{d}\,t} = 2\,D_q/r^2 \,(\text{for an empty tube}) \tag{15}$$

and 🐇

$$\frac{\mathrm{d}\,\delta_t^2}{\mathrm{d}\,t} = 2 \,\gamma \, D_g/r^2 \,(\text{for a packed tube}) \tag{16}$$

Hence, a plot of ∂_t^2 against the time of residence in the column is a straight line of slope $2 D_g/v^2$ (for an empty tube) or $2 \gamma D_g/v^2$ (for a packed column), from which the interdiffusion coefficient can be calculated. Details of the method and the theoretical interpretation of γ are discussed in the original paper⁴².

D. Multi-flow-rate and one-flow-rate methods

Huber and van Vught³⁵ and Kobayashi and co-workers^{13–15} studied the gaseous diffusion coefficients of dilute and moderately dense gases by perturbation chromatography. Their measurements were based on the dispersion model for laminar flow in a long circular tube at up to 60 atm at 25° for tritiated methane in methane and in tetrafluoromethane by the multi-flow-rate method using the relationship⁴⁵

$$\frac{\Box[\partial^2]}{\Box t} = \frac{2}{r^2} \cdot D_g + \frac{\beta}{D_g}$$
(17)

The diffusion of argon, methane, nitrogen and carbon dioxide in helium at 50°, 25°, 0° and -25° , respectively, at up to 60 atm was measured by the one-flow-rate method using the relationship⁴⁵

$$\frac{2\mathrm{l}\delta^2}{2\mathrm{l}i} = \frac{2}{\mathrm{r}^2} \cdot D_g - \frac{r_0}{24\,D_g}$$
(18)

A representative plot of the rate of change of variance $10^2/1t$ versus $2/r^2$ is given in Fig. 2.

Fig. 2. Determination of diffusivity of tritiated CH₄ in CF₄ at 25° (ref. 45). $\frac{10^2}{1t} = (2/r^2)D_g + \beta/D_a$.

Hu⁴⁴ and Hu and Kobayashi⁴⁵ improved perturbation detection by using a small-volume ionization chamber for radioactive detection and a micro-scale thermal conductivity cell for non-radioactive detection. Agreement between their experimental and theoretical values was good for variance calculations. Some results were obtained by using both the multi-flow-rate method, which used several velocities at the same temperature and pressure, and the one-flow-rate method, which required measurement at only one flow-rate.

Apart from the literature discussed above, several investigations have been reported on the use of gas chromatographic methods for measuring gas-phase diffusion coefficients using packed or unpacked columns⁴⁶⁻⁴⁹.

3. EFFECTIVE DIFFUSIVITY OF CATALYSTS

The measurement of effective diffusion coefficients is based on the well known equation developed by Van Deemter *et al.*⁵⁰ for a gas chromatographic column:

$$H = A + B/v + C v \tag{19}$$

where H is the HETP and v is the interstitial carrier gas velocity. The terms A, B and C are constants of the column, gases and operating conditions. The term A is due to turbulence in the gas stream caused by the particles of packing and is the so-called "eddy diffusion" term. The term B is due to longitudinal diffusion of gas in the pulse both forwards and backwards in the carrier gas stream. The C term is due to mass transfer between the gas and solid phases. It can be seen from eqn. 19 that at high gas velocities the term C is dominant and the B term becomes unimportant. Thus, the equation for H at high carrier gas velocities reduces to

$$H = A + C v \tag{20}$$

Habgood and Hanlan⁵¹ obtained the following expression for C:

$$C = \frac{d_p^2}{\sqrt{2\pi^2}} \cdot \frac{F_1}{F_2} \cdot \frac{1}{p_r D_e} \cdot \frac{1}{[1 - 273 F_1/\alpha' T q_b]^2}$$
(21)

where

$$\alpha' = \frac{[V_R^0 - V_d^0]}{W} \cdot \frac{273}{T}$$
(22)

They calculated the HETP for very small sample volumes giving symmetrical Gaussian peaks by the relationship

$$H = \frac{L}{16} \left(\frac{1S^{0}}{1V_{R}^{0}}\right)^{2}$$
(23)

and attempted a tentative interpretation of C in terms of an apparent gas phase diffusion in the charcoal pores.

The term C can also be expressed⁵² as

$$C = \frac{d_{\rho}^2}{\sqrt{2 \, \pi^2}} \cdot \frac{F_1}{F_2} \cdot \frac{1}{p_r \, D_e} \cdot \frac{1}{[1 - K_0 \, F_1/F_2]^2}$$
(24)

where

$$K_0 = 1/[\varepsilon + (t_m - t_d) \vee F_1/F_2 L]$$
(25)

and the HETP calculated by measuring the pulse broadening of a non-chemically interacting gas at various flow velocities that occur in a column packed with catalyst using eqn. 5, 6 or 23.

Using the values of H as a function of flow velocity, the term C (and also A and B) of the Van Deemter equation can be calculated by plotting the HETP. H, against the flow velocity (or by the least-squares method): the slope of the linear portion of the curve in the region of high gas velocities corresponds to the value of the term C (a representative plot of H versus r is shown in Fig. 3⁵³). Hence, as all the terms in eqn. 24 except D_c can be determined experimentally, the effective diffusivity of the catalyst can be calculated with sufficient accuracy.

Leffler⁵² applied this method to alumina H-51 using nitrogen as the adsorbed gas at -78° and found reasonable agreement between the results obtained from this method and the Weisz and Schwartz relationship⁵⁴. Davis and Scott⁵⁵, using gas chromatography, also reported good agreement between the values of D_e and steady-state results for solids that are reasonably homogeneous.

Szlaur⁵⁶ measured the adsorption kinetics of polar compounds on molecular sieves in order to determine the effective diffusion coefficients into granules. Values of the coefficients of mass transfer for packed capillary gas-solid chromatographic columns were measured from the dependence of HETP on flow-rate and used to explain the low values of zone diffusion⁵⁷.

Eberly⁵⁸ and Ma and Mancel⁵³ studied the effective diffusivity of inert gases (argon, krypton and sulphur hexafluoride) in a series of Na- and H-mordenites. Na-faujasite and amorphous silica–alumina catalysts and of carbon dioxide, nitrogen dioxide and sulphur dioxide in molecular sieve zeolites. They found that this gas chromatographic pulse technique is especially suitable for measurement of effective diffusivities of solid catalysts at high temperatures and low concentrations. It is very difficult to make measurements under these conditions by the conventional vacuum technique⁵⁹. Trimm and Corrie⁵⁸ employed this method for the measurement of the diffusivity of various gases in catalyst pellets as a function of temperature. They found

that the results obtained at low temperatures for some gases cannot be extrapolated to the higher temperatures at which the catalyst operates. At temperatures below 400 the variation of D_e with temperature showed predictable behaviour, but above 400 a marked increase in the dependence of D_e on temperature was observed, the magnitude of which depended on the nature of the gas. They explained this anomalous effect in terms of a surface diffusion model. As surface mobility is known to increase exponentially with temperature, surface diffusion provides a good explanation of their results.

This gas chromatographic method for the determination of D_c has the inherent advantage that measurements are made at temperatures which approach those used in commercial processes. Detailed procedures for the determination of the experimental values of the terms in the expression used for calculating effective diffusion coefficients have been given by Leffler⁵². Eberly⁵⁸ and Ma and Mancel⁵³.

4. MASS TRANSFER COEFFICIENTS FOR PACKED BEDS

A. General

The advanced theory of gas chromatography permits the estimation of the mass transfer resistances such as axial diffusion, interphase diffusion, film diffusion and intra-particle (or intra-crystalline) diffusion, by chromatographic measurements⁶⁰⁻⁶¹. Recent developments in gas chromatographic theory, with emphasis on the mass transfer processes that occur in the packed column, are summarized below.

Following the simple approach of Giddings⁶⁵ and Van Deemter *et al.*⁵⁰. Jones²⁵ derived a generalized expression for the HETP including the effect of gasphase mass transfer. Van Deemter's original equation (eqn. 19) was modified by Kambara and co-workers^{66,67}, who gave a mathematical treatment of the kinetic role of diffusion and the pressure drop in gas chromatography. There are a number of papers and theories suggesting different modifications of Van Deemter's equation⁶⁸⁻⁷⁰. Takács⁷⁰ developed an approximation equation which involves the use of a simple mathematical method for numerically determining the coefficients of the approximation equation by means of a computer.

Giddings^{15,71} carried out theoretical studies of band spreading in chromatography by a non-equilibrium method^{14,16} and examined the contribution of lateral diffusion to plate height. Khan⁷² presented a non-equilibrium treatment which includes interfacial mass transfer resistance. Kubin⁷³ contributed to the theory of chromatography in a detailed analysis of diffusion outside and inside the support particles.

At low concentrations, the shapes of the peaks deviate from a Gaussian distribution⁷⁴ and may be sensitive to the detailed kinetics. Bock and Parke⁷⁵ calculated the first four moments of the distribution function on the assumption that the rates of sorption and desorption do not play significant roles, and the distribution functions were found from these moments. Chromatographic peaks were treated mathematically by Kaminskii *et al.*⁷⁶ and the first six moments of the peak were derived on the assumption that peak spreading is determined solely by diffusion in the stationary phase and the sorption coefficient is large: a method for the recalculation of the distribution function from the moment was also suggested. Linear non-

equilibrium chromatography was treated mathematically independently by Kučera⁷⁷, and five moments of the chromatographic peak were calculated and their physical significance was discussed. Grubner⁷⁸ applied the statistical moments theory to the solution of a system of partial differential equations describing a model based on diffusion-controlled kinetics for gas-solid chromatography. Grubner and Underhill⁷⁹ used a standard mathematical method of analysis by moments to compare the most common equations for mass transfer in a packed bed, and the first six moments were given for four equations (for a theoretical chamber model, film-limited mass transfer, intra-particle diffusion and inter-particle diffusion). In each instance, the first ordinary moment was found to be independent of the mechanism of mass transfer.

Grubner *et al.*^{\$0} studied mass transfer phenomena in gas-solid systems with special emphasis on the internal porosity of the stationary phase, and the mass transfer coefficients were obtained from a more exact treatment of gas-solid chro-matography^{\$1}.

Analysis of moments is a very powerful mathematical technique and can be used as a means of comparing the previously derived equations for break-through curves^{60,61,79}. From an experimental viewpoint, only the first five or six moments need be calculated; the higher moments are difficult to determine from experimental data⁷⁹.

B. Method based on moment analysis

Schneider and Smith^{50,51} presented a new method for determining adsorption equilibrium constants, rate constants, mass transfer coefficients, axial or longitudinal diffusivity, intra-particle diffusivity and surface diffusivity from gas chromatographic data. The method was based upon the theory of chromatography developed by Kubin⁷³ and Kučera⁷⁷ for relating the moments of the effluent concentration wave from a bed of adsorbent particles to the rate constants associated with various steps in the overall adsorption process. Basically, a pulse of the adsorbate is injected into the column (packed with catalyst particles) head and the first and second moments of the outlet peak are measured. Theory permits the calculation of the mass transfer coefficients from these measurements. The principles of the method are as follows.

The first absolute moment (u_i) of the chromatographic curve is defined as

$$\mu_1' = m_1/m_0$$
 (26a)

where

$$m_n = \int_0^\infty t^n c(z,t) dt \quad (n = 0, 1, 2, ...)$$
(26b)

The first moment is of basic significance in the determination of retention time and depends only on the partition coefficient and on the longitudinal diffusion, and is not affected by transport phenomena on the grain and across the surface film or by the shape and size of the grain.

The second central moment (μ_i) of the chromatographic curve is defined as

$$\mu_2 = \frac{1}{m_0} \int_0^\infty (t - \mu_1')^2 c(z, t) \, \mathrm{d}t$$
(27)

The second central moment has significance in the determination of the peak width and, as with all higher moments, it depends on all factors that characterize the transport of a given compound through the column.

The moments μ'_1 and μ_2 can be evaluated explicitly, using Laplace-Carson transforms^{60,61}, as

$$\mu_1' = \frac{z}{r} \left(1 + \delta_0 \right) + \frac{t_{0,1}}{2}$$
(28)

and

$$\mu_{2} = \frac{2z}{r} \left[\delta_{1} + \frac{E_{A}}{\alpha} \left(1 + \delta_{0} \right)^{2} \frac{1}{r^{2}} \right] + \frac{t_{0A}^{2}}{12}$$
(29)

where

$$\delta_0 = \frac{1-\alpha}{\alpha} \cdot \vec{p} \left(1 + \frac{q_p}{\vec{p}} \cdot K_A \right)$$
(30)

and

$$\delta_1 = \frac{1-\alpha}{\alpha} \cdot \frac{R^2 \beta^2}{15} \cdot \left(1 + \frac{q_p}{\beta} K_A\right)^2 \cdot \left(\frac{1}{D_p} + \frac{5}{k_f R}\right)$$
(31)

Further, the effective intraparticle diffusion coefficient, D_p , is related to the effective surface diffusion coefficient, D_x , by the relationship

$$D_p = D_k + \frac{\varrho_p}{\beta} \cdot K_A D_s$$
(32)

and the effective gas diffusion coefficient (Knudsen), D_k , is given by

$$D_k = \frac{\vec{\beta}}{q_{\text{int}}} \cdot \mathcal{Q}_k \tag{33}$$

where

$$\mathscr{D}_{k} = 4/3 r_{p} \sqrt{2} RT/\pi M \tag{34}$$

The effective surface diffusion coefficient, D_s , is related to the true surface diffusion coefficient, \mathcal{Q}_s , by the relationship

$$D_{\rm s} = \frac{\beta}{q_{\rm sur}} \cdot \mathcal{Q}_{\rm s} \tag{35}$$

It has been shown that the external mass transfer coefficient, k_f , does not depend on the carrier gas velocity at low Reynolds number⁶⁰. Hence k_f can be calculated from the relationship $N_{\text{sh},AB} = 2.0$, where the Sherwood number is $N_{\text{sh},AB} = 2 R k_f / D_{AB}$.

By using the resulting relationship $k_f R = D_{AB}$ in eqn. 31, the effective intraparticle diffusion coefficient, D_p , can be calculated from the experimental second central moment (μ_2) for a series of chromatographic curves measured for different carrier gas velocities, v. The adsorption coefficient, K_A , can be evaluated by means of eqns. 28 and 30 from the experimental first absolute moment (μ'_1) using the same series of chromatographic curves. The binary diffusion coefficient, D_{AB} , can be calculated from theoretical equations⁸² if the experimental values are not available.

Further, the axial diffusion coefficient $(D_{::})$ can be obtained from the experimental second central moments measured at high carrier gas velocities (*i.e.*, high Reynolds numbers) by eqn. 29. Finally, eqns. 32–35 are used to evaluate the effective and true surface diffusivities from the effective intra-particle diffusion coefficient, D_p .

Schneider and Smith^{60,61} used the above gas chromatographic method for measuring axial dispersion coefficients, intra-particle diffusivities, external mass transfer coefficients and surface diffusivities for ethane, propane and *n*-butane on silica gel at $50-200^\circ$ and at atmospheric pressure. Good agreement was obtained between the experimental and calculated breakthrough curves, which confirmed the theory of gas-solid chromatography as well as the model used for the adsorber. This fact also suggested that the rate constants determined by gas chromatography have a physical significance and are not simply empirical constants.

As the average surface coverage is very low, the surface diffusion coefficients obtained by this method are very close to the limiting values. The detailed experimental precedures, evaluation of moments of the chromatographic curves and estimation of mass transport coefficients are discussed in the original papers^{60,61}.

C. Method based on Fourier analysis

Gangwal *et al.*⁶¹ obtained transport rate coefficients by determining the coefficients of the Fourier series which describes chromatographic peaks rather than the moments themselves, arguing that these can be determined more accurately than the moments, particularly higher moments. The principles of this method are as follows.

A function f(t) in an interval in time, t, of period T^{*}, can be represented by a Fourier series as

$$\mathbf{i}(t) = \sum_{n=1}^{T} a_n \sin(n\pi t/T') + \sum_{n=0}^{T} b_n \cos(n\pi t/T')$$
(36)

where the coefficients a_{μ} , b_{μ} and b_{μ} are

b_o

$$a_{\mu} = \frac{1}{T'} \int_{-T'}^{2T} f(t) \sin(n\pi t/T') dt$$
(37)

$$b_n = \frac{1}{T'} \int_{0}^{2T} f(t) \cos(n\pi t/T') dt$$
(38)

$$= \frac{1}{2T^*} \int_{0}^{2T^*} f(t) dt$$
(39)

There will be just one peak for chromatographic curves of interest in rate measurement and the period T' is a time sufficiently long to allow the tail of the peak to vanish. With injection of a sample in the carrier gas, the peak measures c(t). Assuming that

the injection is closely approximated by the Kronecker delta function $\delta(t = 0)$, the normalized response is E(t), the probability density function of residence time. The Fourier transform of E(t) is

$$\overline{E}(i\omega^{*}) = \int_{0}^{2T'} E(t) \cos(n\pi t/T') dt - i \int_{0}^{2T'} E(t) \sin(n\pi t/T') dt$$
(40)

$$= T'b_n - i T'a_n \tag{41}$$

By employing the amplitude ratio, A_n , and the phase lag, q_n , for the *n*th-harmonic component in place of a_n and b_n , we obtain

$$A_n = T' \sqrt{a_n^2 + b_n^2} \tag{42}$$

$$q = \arctan\left(b_n/a_n\right) \tag{43}$$

The coefficients a_n , b_n and subsequently A_n and q_n are to be evaluated from the normalized chromatographic curve by eqns. 37, 38, 42 and 43. The partial differential equations and boundary conditions for the system (assuming a δ input) are normalized and subjected to a Fourier transform and the coefficients a_n and b_n are obtained from the imaginary and real parts of eqn. 41. Expressions for A_n and q_n are obtained through eqns. 42 and 43. Model parameters are then evaluated by minimizing $[(A_n)_{exptl.} - (A_n)_{model}]^2$ or $[(q_n)_{exptl.} - (q_n)_{model}]^2$ or their sum by a suitable search technique.

Gangwal *et al.*⁶⁴ obtained the system properties from the amplitude ratio by a five-dimensional search using the modified simplex method of Nelder and Mead⁸³. The parameters evaluated were relatively independent of the choice of the Fourier coefficient but the dispersion coefficient seemed to be sensitive to the choice of amplitude ratio or phase lag. The detailed theory and the procedures for the evaluation of the parameters *D*. D_c , k_f , K_d and k_u of gas-solid systems from A_u (or q_u) for a chromatographic peak by a five-dimensional search were described in the original paper⁶⁴.

The advantage of Fourier analysis over moment analysis is that it permits more information to be extracted from a curve. The higher moments (third to fifth) which are subject to increasingly large errors, or additional measurements, as Schneider and Smith⁶⁰ undertook, are necessary for moment analysis to give the same result.

Moment analysis and Fourier analysis are limited to systems that can be described by linear differential equations.

D. Method based on the passage of a pulse through a stirred reactor

The above two gas chromatographic techniques^{50,61,64} can be used to study any reactant or product that emerges from the column as a reasonably well defined peak. In the study of a reactant under actual catalytic (or reaction) conditions, the product peak may interfere with that of the reactant.

Kelly and Fuller⁶³ proposed a method based on the passage of a pulse through

a stirred reactor to overcome this difficulty by using a more specific detector. A dynamic mathematical model of an isothermal heterogeneous continuously stirred tank catalytic reactor for a first-order reaction was developed and employed for the experimental determination of intra-granular diffusivities, binary sorption isotherms and reaction rate constants under actual reaction conditions. This method is rapid and only zero- and first-moment calculations of the transient response are required for the data analysis.

E. Study of mass transfer resistances in molecular sieves

Zikanovast determined the radial coefficient of internal diffusion of pentane in granulated zeolites from the dependence of statistical moments of the elution curve on the linear flow velocity of the carrier gas. The results obtained provide evidence that the overall transport rate of the sorbate molecules from the surface of the granule to the adsorption site is limited by activated diffusion within zeolite crystallites. Several investigations have been reported on the measurement of effective diffusivities of synthetic zeolite and molecular sieve catalysts using gas chromatography^{53,56,58}.

MacDonald and Habgood⁶² described a gas chromatographic method based on the theory of Giddings and Schettler⁸⁵ for the determination of intra-crystalline mass transfer resistances in zeolite catalysts. They reported experimental results for benzene, octane and decane on an NaX zeolite catalyst at about 400. The method is based on the following considerations.

The mass transfer in a microporous solid (such as molecular sieve and zeolite catalysts) takes place by two distinct processes: (i) mass transfer from the moving gas stream through the stationary gas film and within the macropore system of the granule to the external surface of the crystallite, and (ii) mass transfer through the micropores of the crystallite to reaction sites on the walls of the micropores. These two processes of mass transport in the regular crystal structure of the zeolites can be studied by the method of Giddings and Schettler⁵⁵, which involves measurements of the total mass transfer resistances using two carrier gases of different diffusivities. The resistance due to process *i* depends upon the nature of the carrier gas, while that due to process *ii* does not, provided that the carrier gas is not significantly adsorbed. The relative contributions of film and macropore resistances to process *i* could be obtained to some extent from results with granules of different size ranges.

According to Giddings and Schettler⁸⁵, the expression for HETP is

$$H/f_1 = H_g - C_s r_0(f_2/f_1)$$

where H_g is the sum of all gas-phase contributions to the HETP. C_s the intracrystalline mass transfer coefficient, v_0 the column outlet velocity, f_2 the James-Martin pressure gradient correction used in gas chromatography to allow for the variation in local gas velocity along the column, and f_1 a factor to allow for decompression along the column. The terms contained in H_g are a function of v_0/D_g . The principle of the method lies in the fact that a known change in D_g which gives a corresponding change in H_g is produced, while not affecting C_s . By introducing a variable

$$X = r P_0 / D_a$$

504

(45)

(44)

eqn. 44 becomes

$$H/f_1 = H_a(X) + C_s X f_2 D_a/f_1 P_0$$
(46)

Either by varying P_0 using the same carrier gas, or by choosing two carrier gases of different diffusivities, two different curves of H/f_1 versus X can be obtained. The HETP can be obtained by using the relationship

$$H = L \mu_2 / (\mu_1)^2 \tag{47}$$

based on the more refined theories⁷⁸ from the statistical moments of the peak, which can readily be calculated by computer from a digitized peak⁶². By determining the HETPs over a range of flow-rates in each carrier gas, under conditions such that the range of X is the same for each gas. $H_g(X)$ will have an identical value in each carrier and hence the term C_s can be obtained from the relationship

$$C_s = [(H/f_1)_1 - (H/f_1)_*]/[X(Z_1 - Z_2)]$$
(48)

where

$$Z = f_2 D_{\mu} f_1 P_0 \tag{49}$$

Hence, from the plots of H/f_1 versus X and Z versus X, one can obtain C_s from the differences in H/f_1 and Z for two carrier gases at a given value of X. Typical plots of data⁶² according to eqn. 48 are shown in Fig. 4.

Fig. 4. Typical plots of data⁶² according to eqn. 48, for benzene. Temperature = 430° . •, Nitrogen; hydrogen.

For a homogeneous spherical crystallite, an apparent diffusion coefficient, D_c , of the sorbate within the crystallite can be obtained from¹⁵

$$D_{c} = \frac{1}{30} \cdot \frac{k}{[1+k]^{2}} \cdot \frac{d_{c}^{2}}{C_{s}}$$
(50)

where k is the partition ratio and d_c the diameter of the zeolite crystallite. For large values of k, eqn. 50 reduces to

$$D_c = \frac{1}{30} \cdot \frac{d_c^2}{k C_s} \tag{51}$$

Based on their experience. MacDonald and Habgood⁶² suggested criteria to - indicate acceptable results.

5. HEAT TRANSFER PARAMETERS FOR PACKED BEDS

Sagara *et al.*⁵⁶ developed a temperature pulse method based on the chromatographic theory of Kubin⁷³ for the determination of heat transfer parameters for flow in packed beds of porous or non-porous solid particles. The method is based on the assumption that heat is dispersed axially and heat transfer occurs between tiuid and particle, and intra-particle. The contribution to heat transfer due to solidto-solid conduction, which is significant for small particle sizes, is neglected and hence this method is not suitable for beds of small particles.

The moments of the response of the column effluent temperature to a pulse in the inlet temperature are related to the thermal parameters by simple algebraic equations, so that the functional relationships of the parameters and variables are directly displaced: by varying the conditions, some of the coefficients can be determined. The first moment of the temperature curve from the bed gives reasonable estimates of the specific heat, while the second moment provides information on rate parameters (such as fluid-to-particle heat transfer coefficient, effective thermal conductivity of the particles and axial conductivity of the fluid phase). The method is rapid and interpretation of the data can easily be carried out as only elementary calculations are involved.

6. ACKNOWLEDGEMENT

The author thanks Dr. L. K. Doraiswamy, Deputy Director and Head of the Division of Chemical Engineering and Process Development, National Chemical Laboratory, Poona, for his encouragement throughout this work.

7. SUMMARY

A comprehensive review on the use of gas chromatographic techniques in the measurement of binary diffusion coefficients of gases and vapours, effective diffusivities of catalysts, intra-particle and intra-crystalline mass transfer coefficients, axial diffusion coefficients, surface diffusivities and heat transfer coefficients is presented.

8. NOMENCLATURE

an	Fourier coefficient defined by eqn. 37.
A. B. C	constants of eqn. 19.
A_n	amplitude ratio defined by eqn. 42.
ba ba	Fourier coefficients defined by eqns. 38 and 39.
C	chart paper speed of recorder.
C.	non-equilibrium term for gaseous diffusion.
C,	non-equilibrium term for kinetic processes
C	non-equilibrium term for liquid diffusion
C	mace transfer resistance within crystallite
	mass transier resistance within crystance.
	crystante diameter.
a_p	particle diameter.
	dispersion coefficient.
D_{AB}, D_g	gas-phase diffusion coefficients.
D_r	intra-crystalline diffusion coefficient.
D_e	effective diffusivity of catalyst.
D_q^*	binary diffusion coefficient (at 1 atm pressure).
D_k	effective gas (Knudsen) diffusion coefficient.
\mathscr{D}_{k}	Knudsen diffusion coefficient.
D_s	effective surface diffusion coefficient.
9	true surface diffusion coefficient.
E_A	apparent activation energy.
E(ies')	Fourier transform of $E(t)$.
E(t)	probability density residence time.
fi-f-	pressure correction terms.
F_1	void fraction in packing.
<i>F</i> .,	solid fraction in packing $(1 - F_1)$.
нĨ	height equivalent to a theoretical plate (HETP).
il.	plate height to gas phase contribution.
k	partition ratio.
ka	adsorption rate constant.
ke	external mass transfer coefficient.
κ.	adsorption coefficient
1	distance on recorder chart measured from the point corresponding to
•	the start of the chromatogram to the peak maximum.
1	length of packed column
1.	length of long diffusion tube
1	length of chart diffusion tube
	distance on the base line between points where the two tangents (to the
, m	noint of inflection of neak) intersect
AL M. M.	molecular weights
	number of plates
11	number of plates.
P'	pressure.
Pe .	pore volume.
P_0	ratio of outlet pressure to unit pressure.
<i>q</i> int	tortuosity factor for intra-particle gas diffusion.

507

na far san an sin sin La san sin sin sin	tortuosity factor for intra particle surface diffusion
qsur	tube rediue
10	lube faulus.
Fp D	average pore radius.
K	gas constant.
IVŘ	volume of carrier gas corresponding to the maximum of the peak.
∠IS ^u	volume of carrier gas corresponding to the base of the elution peak.
I	time.
I_{m} , I_{d}	retention times for adsorbate and non-adsorbate.
1 ₀₋₁	injection time for adsorbable substance.
t _i ;	retention time of peak measured at its centre.
T_{1}	temperature.
Τ'	period.
r	average carrier gas velocity.
r,	critical velocity.
ro	outlet velocity.
V_A, V_B	molar volumes.
Va	retention volume for non-adsorbate.
V_{R}^{0}	retention volume for adsorbate.
W	weight of adsorbent.
X	reduced velocity equal to $v_0 P_0 / D_0^2$.
<u> </u>	coordinate along the length of chromatographic column.
Z	$f_{\rm s} D_{\rm o} / f_{\rm t} P_{\rm o}$
11	external void fraction.
u.	distribution coefficient.
8	intra-particle void fraction
	constants (of the order of unity)
<i>n</i> .	first absolute moment
	second and third central moments
1·2·1·3	density of nucked bed
20	narticle density
$\frac{\partial P}{\Delta^2}$	variance
0 7	tandard deviation
4	standard uçviandır.
(*) (*)	peak within.
ер (Д	$\frac{1}{2} \frac{1}{2} \frac{1}$
y	equal to L/V
8	pellet porosity.

REFERENCES

1 M. A. Khan, Lab. Pract., 11 (1962) 195.

2 J. H. Purnell, Endeavour, 23 (1964) 142.

3 R. Kobayashi, P. S. Chapplear and H. A. Dean, Ind. Eng. Chem., 59, No. 5 (1967) 63.

4 L. Ya. Gavrilina and D. A. Vyokhirev, Usp. Khim., 36 (1967) 362.

5 J. R. Conder, Advan. Anal. Chem. Instrum., 6 (1967) 207.

6 J. R. Conder, in J. H. Purnell (Editor), *Progress in Gas Chromatography*, Interscience, New York, 1968, pp. 209–270.

508

- 7 A. Ionescu, Rev. Chim. (Buchar.), 19 (1968) 709.
- 8 G. L. Young, Chromatogr. Rev., 10 (1968) 129.
- 9 S. Trestianu, Rev. Chim. (Buchar.), 18 (1967) 272.
- 10 S. Trestianu, Rev. Chim. (Buchar.), 20 (1968) 157.
- 11 V. G. Berezkin, Usp. Khim., 37 (1968) 1348.
- 12 V. R. Choudhary and L. K. Doraiswamy, Ind. Eng. Chem., Prod. Res. Develop., 10(1971) 218.
- 13 J. C. Giddings and S. L. Seager, Ind. Eng. Chem., Fundam., 1 (1962) 277.
- 14 J. C. Giddings, J. Chem. Phys., 31 (1959) 1462.
- 15 J. C. Giddings, J. Chromatogr., 5 (1961) 46 and 61.
- 16 J. C. Giddings, J. Chromatogr., 3 (1960) 443.
- 17 J. C. Giddings, Nature (London), 188 (1960) 847.
- 18 J. C. Giddings, Anal. Chem., 33 (1961) 962.
- 19 T. C. Huang, J. Sheng and F. J. F. Yang, J. Chim. Chem. Soc., Ser. 11, 15 (1968) 127.
- 20 J. C. Giddings and S. L. Seager, J. Chem. Phys., 33 (1960) 1579.
- 21 J. C. Giddings and S. L. Seager, J. Chem. Phys., 35 (1961) 2242.
- 22 J. C. Giddings and S. L. Seager, J. Chem. Eng. Data, 8 (1963) 168.
- 23 G. Taylor, Proc. Roy. Soc., Ser. A, 219 (1953) 186.
- 24 G. Taylor, Proc. Roy. Soc., Ser. A, 223 (1954) 446; 225 (1954) 473.
- 25 W. L. Jones, Anal. Chem., 33 (1961) 229.
- 26 R. Kieselback, Anal. Chem., 33 (1961) 23.
- 27 J. Boheman and J. H. Purnell, J. Chem. Soc., (1961) 360.
- 28 E. N. Fuller, K. Ensley and J. C. Giddings, J. Phys. Chem., 73 (1969) 3679.
- 29 H. J. Arnikar and H. M. Ghule, Int. J. Electron., 26 (1969) 159.
- 30 H. J. Arnikar, T. S. Rao and K. H. Karmarkar, Int. J. Electron., 22 (1967) 381.
- 31 G. L. Hargrave and D. T. Sawyer, Anal. Chem., 39 (1967) 244.
- 32 T. C. Huang, F. J. F. Yang, C. J. Huang and C. H. Kuo, J. Chromatogr., 70 (1972) 13.
- 33 J. Kwok, E. R. Felt and G. A. Mickelson, J. Gas Chromatogr., 6 (1968) 491.
- 34 A. A. Zhukhovickii, S. N. Kim and M. O. Burova, Zavod. Lab., 34 (1968) 144.
- 35 P. Fejes and L. Czaran, Acta Chim, Acad. Sci. Hung., 29 (1961) 171.
- 36 J. F. K. Huber and G. van Vught, Ber. Bunsenges, Phys. Chem., 69 (1965) 821.
- 37 G. T. Chang, Ph.D. Thesis, Rice University, Houston, Texas, 1966.
- 38 E. N. Fuller and J. C. Giddings, J. Gas Chromatogr., 3 (1965) 222.
- 39 J. J. Carberry and R. H. Bretton, J. Chem. Phys., 35 (1961) 224.
- 40 P. Fejes and G. Schay, Separ. Sci., 1 (1966) 491.
- 41 J. C. Giddings, Anal. Chem., 35 (1963) 439.
- 42 J. H. Knox and L. McLaren, Anal. Chem., 36 (1964) 1477.
- 43 G. T. Chang and R. Kobayashi, XXXVI International Congress on Industrial Chemistry, Brussels, Sept. 10-21, 1966.
- 44 A. T. Hu, Ph.D. Thesis, Rice University, Houston, Texas, 1969,
- 45 A. T. Hu and R. Kobayashi, J. Chem. Eng. Data, 15 (1970) 328.
- 46 M. Fluendy and D. Horne, Separ. Sci., 3 (1968) 203.
- 47 G. L. Hargrave, Diss. Abstr., 28 (1968) 4034B.
- 48 A. Bournia, J. Coull and G. Houghton, Proc. Roy. Soc., Ser. A, 261 (1961) 227.
- 49 E. V. Evans and C. N. Kenney, Proc. Rov. Soc., Ser. 4, 284 (1965) 540.
- 50 J. J. van Deemter, F. J. Zuiderweg and A. Klinkenberg, Chem. Eng. Sci., 5 (1956) 271.
- 51 H. W. Habgood and J. F. Hanlan, Can. J. Chem., 37 (1959) 843.
- 52 A. J. Leffler, J. Catal., 5 (1966) 22.
- 53 Y. H. Ma and C. Mancel, Amer. Inst. Chem. Eng., J., 18 (1972) 1148.
- 54 P. B. Weisz and A. B. Schwartz, J. Catal., 1 (1962) 399.
- 55 B. R. Davis and D. S. Scott, *Measurement of Effective Diffusivities of Porous Pellets*, Reprint 48D, 58th Annual Meeting, Amer. Inst. Chem. Eng. Philadelphia, Pa., Dec. 1965,
- 56 J. Szlaur, Ropa Uhlie, 11 (1969) 37.
- 57 O. A. Sukhorukov and N. M. Vatulya, Zavod, Lab., 35 (1969) 146.
- 58 (a) P. E. Eberly, Jr., Ind. Eng. Chem., Fundam., 8 (1969) 25; (b) D. L. Trimm and J. Corrie, Chem. Eng. J., 4 (1972) 229.
- 59 R. M. Barrer, Advan. Chem. Ser., No. 102 (1971) 1.
- 60 P. Schneider and J. M. Smith, Amer. Inst. Chem. Eng. J., 14 (1968) 762.

- 61 P. Schneider and J. M. Smith, Amer. Inst. Chem. Eng. J., 14 (1968) 886.
- 62 W. R. MacDonald and H. W. Habgood, Can. J. Chem. Eng., 50 (1972) 462.
- 63 J. F. Kelly and O. M. Fuller, Can. J. Chem. Eng., 50 (1972) 534.
- 64 S. K. Gangwal, R. R. Hudgins, A. W. Bryson and P. L. Silveston, Can. J. Chem. Eng., 49 (1971) 113.
- 65 J. C. Giddings, J. Chem. Educ., 35 (1958) 588.
- 66 T. Kambara and K. Ohzeki, J. Chromatogr., 21 (1966) 383.
- 67 T. Kambara, K. Ohzeki and K. Saitoh, J. Chromatogr., 27 (1967) 33.
- 68 T. Kambara and K. Ohzeki, Bunseki Kagaku (Jap. Anal.), 15 (1966) 1175.
- 69 T. Kambara, K. Hata and K. Ohzeki, J. Chromatogr., 37 (1968) 304.
- 70 J. Takács, J. Chromatogr., 38 (1968) 309.
- 71 J. C. Giddings, J. Chromatogr., 4 (1960) 11.
- 72 M. A. Khan, in M. van Swaay (Editor), Gas Chromatography 1962. Butterworths, London, 1962, pp. 3-6.
- 73 M. Kubin, Collect. Czech. Chem. Commun., 30 (1965) 1104 and 2900.
- 74 Ya. V. Shelvelev, Zh. Fiz. Khim., 31 (1957) 960.
- 75 J. Bock and N. Parke, in N. Brenner (Editor), Gas Chromatography, Academic Press, New York, London, 1962, p. 391.
- 76 V. A. Kaminskii et al., Zh. Fiz. Khim., 39 (1965) 2540.
- 77 E. Kučera, J. Chromatogr., 19 (1965) 237.
- 78 O. Grubner, Advan. Chromatogr., 6 (1968) 173.
- 79 O. Grubner and D. Underhill, J. Chromatogr., 73 (1972) 1.
- 80 O. Grubner, M. Ralek and E. Kucera, Collect. Czech. Chem. Commun., 31 (1966) 2629
- 81 O. Grubner, M. Ralek and A. Zikanov, Collect. Czech. Chem. Commun., 31 (1966) 852.
- 82 R. B. Bird, W. E. Stewart and E. N. Lightfoot, *Transport Phenomena*, Wiley, New York, London, 1960, p. 495.
- 83 J. A. Nelder and R. Mead, Comput. J., 7 (1965) 308.
- 84 A. Zikanova, J. Chromatogr. Sci., 9 (1971) 248.
- 85 J. C. Giddings and P. D. Schettler, Anal. Chem., 36 (1964) 1483.
- 86 M. Sagara, P. Schneider and J. M. Smith, Chem. Eng. J., 1 (1970) 47.